

Polymerization of Dual Cure and Phorocuring Bulk-Fill Composites

Cadenaro M^{1,2*}, Navarra C^{1,2}, Fanfoni L¹, Mazzoni A³, Turco G¹, Breschi L³

¹DSM, University of Trieste, Trieste, Italy; ²IRCCS Burlo Garofolo, Trieste, Italy; ³DIBINEM, University of Bologna, Bologna, Italy

Objective

In recent years, bulk fill composites have been introduced to the market claiming that they could be placed in bulk up to 4 or 5 mm thick layers, avoiding the layering techniques, while allowing adequate polymerization. The aim of this in vitro study was to investigate the degree of conversion (DC%), depth of cure (DPC) and microhardness (MH) of a dual-curing bulk-fill composite compared to light-curing ones in deep simulated cavities.

Materials and Methods

Materials tested were Fill-Up! (Coltene), a dual-curing bulk-fill material, and three photocuring bulk-fill composites: SDR (Dentsply), SonicFill (Kerr) and Tetric EvoCeram BF (Ivoclar). Flat dentin surfaces were obtained from extracted non-carious human molars. A cylindrical mold (height: 8 mm; diameter: 5 mm) obtained from a putty polyvinylsiloxane impression material was positioned on the dentin surface. After application of the adhesive system (ParaBond, Coltene), composites were placed into the mold in bulk and polymerized for 20 s with a LED curing light (Coltolux SPEC3, Coltene) from the top of the cylinder. After 24 h molds were removed and composite cylinders were sectioned perpendicularly to the top surface to expose the composite depth. Micro-Raman spectra of the specimens were collected using a Raman equipment (Renishaw InVia) at 1 mm intervals from the bottom to the composite surface. Spectra were acquired over the spectral region of 400 to 1900 cm⁻¹. Micro-Raman spectra of the uncured and cured composites were collected to identify reference and reaction peaks [605cm⁻¹ (C-O-O); 1610cm⁻¹ (aromatic ring); 1640cm⁻¹ (C=C) group]. DC % was calculated using the ratio between reactive and internal reference peak intensities. MH assessment was measured on the same specimens analyzed with micro-Raman at 1 mm intervals from the bottom to the composite surface with a Vickers microhardness tester (Leica Microsystem) at a 200 g load for 10 s. Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney tests.

Raman equipment

Microhardness indenter

Results

Results are summarized in Table 1. Fill-Up!, Tetric EvoCeram BF and SDR showed an adequate DC% at all depths, but MH significantly decreased at higher depths for all materials except for Fill-Up!, which was the only composite with a comparable MH at all depths. SonicFill could not be polymerized beyond 6 mm.

DC%	Fill-Up!		SDR		SonicFill		Tetric EvoCeram BF		Micro hardness	Fill-Up!		SDR		SonicFill		Tetric EvoCeram BF	
depth (mm)	mean	st. dev.	mean	st. dev.	mean	st. dev.	mean	st. dev.	depth (mm)	mean	st. dev.	mean	st. dev.	mean	st. dev.	mean	st. dev.
1	59.7 ^a	5.4	53.1 ^a	6.8	71.9 ^a	8.1	69.6 ^a	4.1	1	71.4 ^A	18.5	52.6 ^A	12.0	78.4 ^A	6.9	64.3 ^A	4.3
2	63.7ª	5.1	58.8ª	4.5	67.3 ^a	5.2	71.6 ^a	3.0	2	67.4 ^A	19.1	47.7 ^A	6.0	76.5 ^A	8.8	61.1 ^A	5.6
3	62.5 ^a	5.0	56.8 ^a	5.5	61.8 ^b	8.3	69.4 ^a	4.1	3	64.9 ^A	9.4	49.7 ^A	7.4	78.1 ^A	11.2	63.3 ^A	4.1
4	60.3 ^a	5.6	55.7 ^a	5.5	54.8 ^c	11.7	69.0 ^a	3.9	4	61.5 ^B	8.8	46.0 ^{AB}	5.3	69.7 ^B	6.9	58.5 ^{AB}	1.9
5	61.7 ^a	6.1	53.8 ^a	4.9	49.2 ^c	13.8	68.2ª	3.6	5	62.7 ^{AB}	10.7	51.7 ^A	9.6	66.0 ^B	6.3	55.5 ^B	3.2
6	66.4 ^a	9.1	50.3 ^a	10.3	40.6 ^d	15.6	67.8 ^a	4.2	6	65.4 ^A	16.6	48.0 ^A	7.9	56.8 ^C	10.1	53.1 ^B	3.3
7	59.5 ^a	7.6	51.7 ^a	4.0	28.0 ^e	12.9	63.7 ^b	4.5	7	66.7 ^A	14.4	43.9 ^B	6.7	n.a.	n.a.	49.7 ^C	2.7
8	61.5 ^a	6.5	50.0 ^a	4.6	n.a.	n.a./	61.0 ^b	5.1	8	66.6 ^A	14.0	42.6 ^B	8.0	n.a.	n.a.	44.2 ^D	4.4
Table 1: DCsuperscript Ifor each mat	able 1: DC% means and standard deviations of the tested materials at all depths. Same uperscript letters indicate no statistical difference between the different depths (p>0.05) or each material.								Table 2: <i>M</i> superscript for each ma	H means letters ind terial.	and stand dicate no s	lard devia statistical	ations of th difference	e tested between	materials the differ	at all dept ent depth:	ths. Same s (p>0.05)

—	0.10	0.0	0010				00	0
Table 1: DC	% means	and stand	dard devia	tions of th	e tested	materials	at all dept	hs. Same
superscript l	etters ind	icate no s	tatistical d	lifference	between	the differe	ent depths	; (p>0.05)
for each mat	erial.							

Conclusions

Within the limits of this experimental design, DC%, DPC and MH of bulk-fill composites were material-dependent. All materials could be polymerized for more than 5 mm. Fill-Up!, thanks to its dual-curing formulation, was the only material showing a uniform DC%, DPC and MH at all depths. SonicFill was the only tested composite that could not be polymerized up to 8 mm, with a mean maximum depth of cure of 6 mm.

References

1. Pfeifer CS. Polymer-Based Direct Filling Materials. Dent Clin North Am. 2017;61(4):733-750.

2. Reis AF, Vestphal M, Amaral RCD, Rodrigues JA, Roulet JF, Roscoe MG. Efficiency of polymerization of bulk-fill composite resins: a systematic review. Braz Oral Res. 2017;31(suppl 1): 37-48.